| 
				 public 
				Math_BigInteger | 
			#
			Math_BigInteger( optional $x = 0, optional $base = 10 )
				
Converts base-2, base-10, base-16, and binary strings (eg. base-256) to
BigIntegers. 
				
Converts base-2, base-10, base-16, and binary strings (eg. base-256) to
BigIntegers. If the second parameter - $base - is negative, then it will be assumed that
the number's are encoded using two's compliment. The sole exception to this is
-10, which is treated the same as 10 is. Here's an example: 
<?php
   include('Math/BigInteger.php');
   $a = new Math_BigInteger('0x32', 16); 
   echo $a->toString(); 
?>
Parameters
						$xoptional$x base-10 number or base-$base number if $base set.
$baseoptionalinteger $base
Returns | 
		
			| 
				 public 
				String
				
				 | 
			#
			toBytes( Boolean $twos_compliment = false )
				
Converts a BigInteger to a byte string (eg. base-256). 
				
Converts a BigInteger to a byte string (eg. base-256). Negative numbers are saved as positive numbers, unless $twos_compliment is
set to true, at which point, they're saved as two's compliment. Here's an example: 
<?php
   include('Math/BigInteger.php');
   $a = new Math_BigInteger('65');
   echo $a->toBytes(); 
?>
Parameters
						$twos_complimentBoolean$twos_compliment
Returns
						String
 | 
		
			| 
				 public 
				String
				
				 | 
			#
			toHex( Boolean $twos_compliment = false )
				
Converts a BigInteger to a hex string (eg. base-16)). 
				
Converts a BigInteger to a hex string (eg. base-16)). Negative numbers are saved as positive numbers, unless $twos_compliment is
set to true, at which point, they're saved as two's compliment. Here's an example: 
<?php
   include('Math/BigInteger.php');
   $a = new Math_BigInteger('65');
   echo $a->toHex(); 
?>
Parameters
						$twos_complimentBoolean$twos_compliment
Returns
						String
 | 
		
			| 
				 public 
				String
				
				 | 
			#
			toBits( Boolean $twos_compliment = false )
				
Converts a BigInteger to a bit string (eg. base-2). 
				
Converts a BigInteger to a bit string (eg. base-2). Negative numbers are saved as positive numbers, unless $twos_compliment is
set to true, at which point, they're saved as two's compliment. Here's an example: 
<?php
   include('Math/BigInteger.php');
   $a = new Math_BigInteger('65');
   echo $a->toBits(); 
?>
Parameters
						$twos_complimentBoolean$twos_compliment
Returns
						String
 | 
		
			| 
				 public 
				String
				
				 | 
			#
			toString( )
				
Converts a BigInteger to a base-10 number. 
				
Converts a BigInteger to a base-10 number. Here's an example: 
<?php
   include('Math/BigInteger.php');
   $a = new Math_BigInteger('50');
   echo $a->toString(); 
?>
Returns
						String
 | 
		
			| 
				 public 
				Math_BigInteger | 
			#
			copy( )
				
Copy an object PHP5 passes objects by reference while PHP4 passes by value. As such, we need
a function to guarantee that all objects are passed by value, when appropriate.
More information can be found here: http://php.net/language.oop5.basic#51624 ReturnsSee | 
		
			| 
				 public 
				
				
				 | 
			#
			__toString( )
				
__toString() magic method 
				
__toString() magic method Will be called, automatically, if you're supporting just PHP5. If you're
supporting PHP4, you'll need to call toString(). | 
		
			| 
				 public 
				Math_BigInteger | 
			#
			__clone( )
				
__clone() magic method Although you can call Math_BigInteger::__toString() directly in PHP5, you
cannot call Math_BigInteger::__clone() directly in PHP5. You can in PHP4 since
it's not a magic method, but in PHP5, you have to call it by using the PHP5 only
syntax of $y = clone $x. As such, if you're trying to write an application that
works on both PHP4 and PHP5, call Math_BigInteger::copy(), instead. ReturnsSee | 
		
			| 
				 public 
				
				
				 | 
			#
			__sleep( )
				
__sleep() magic method Will be called, automatically, when serialize() is called on a
Math_BigInteger object. See | 
		
			| 
				 public 
				
				
				 | 
			#
			__wakeup( )
				
__wakeup() magic method Will be called, automatically, when unserialize() is called on a
Math_BigInteger object. See | 
		
			| 
				 public 
				Math_BigInteger | 
			#
			add( Math_BigInteger$y )
				
Adds two BigIntegers. Here's an example: 
<?php
   include('Math/BigInteger.php');
   $a = new Math_BigInteger('10');
   $b = new Math_BigInteger('20');
   $c = $a->add($b);
   echo $c->toString(); 
?>
ParametersReturns | 
		
			| 
				 public 
				Array
				
				 | 
			#
			_add( Array $x_value, Boolean $x_negative, Array $y_value, Boolean $y_negative )
				
Performs addition. Parameters
						$x_valueArray$x_value
$x_negativeBoolean$x_negative
$y_valueArray$y_value
$y_negativeBoolean$y_negative
Returns
						Array
 | 
		
			| 
				 public 
				Math_BigInteger | 
			#
			subtract( Math_BigInteger$y )
				
Subtracts two BigIntegers. 
				
Subtracts two BigIntegers. Here's an example: 
<?php
   include('Math/BigInteger.php');
   $a = new Math_BigInteger('10');
   $b = new Math_BigInteger('20');
   $c = $a->subtract($b);
   echo $c->toString(); 
?>
ParametersReturns | 
		
			| 
				 public 
				Array
				
				 | 
			#
			_subtract( Array $x_value, Boolean $x_negative, Array $y_value, Boolean $y_negative )
				
Performs subtraction. Parameters
						$x_valueArray$x_value
$x_negativeBoolean$x_negative
$y_valueArray$y_value
$y_negativeBoolean$y_negative
Returns
						Array
 | 
		
			| 
				 public 
				Math_BigInteger | 
			#
			multiply( Math_BigInteger$x )
				
Multiplies two BigIntegers 
				
Multiplies two BigIntegers Here's an example: 
<?php
   include('Math/BigInteger.php');
   $a = new Math_BigInteger('10');
   $b = new Math_BigInteger('20');
   $c = $a->multiply($b);
   echo $c->toString(); 
?>
ParametersReturns | 
		
			| 
				 public 
				Array
				
				 | 
			#
			_multiply( Array $x_value, Boolean $x_negative, Array $y_value, Boolean $y_negative )
				
Performs multiplication. Parameters
						$x_valueArray$x_value
$x_negativeBoolean$x_negative
$y_valueArray$y_value
$y_negativeBoolean$y_negative
Returns
						Array
 | 
		
			| 
				 public 
				Array
				
				 | 
			#
			_regularMultiply( Array $x_value, Array $y_value )
				
Performs long multiplication on two BigIntegers 
				
Performs long multiplication on two BigIntegers Modeled after 'multiply' in MutableBigInteger.java. Parameters
						$x_valueArray$x_value
$y_valueArray$y_value
Returns
						Array
 | 
		
			| 
				 public 
				Array
				
				 | 
			#
			_karatsuba( Array $x_value, Array $y_value )
				
Performs Karatsuba multiplication on two BigIntegers 
				
Performs Karatsuba multiplication on two BigIntegers See Karatsuba algorithm and MPM 5.2.3. Parameters
						$x_valueArray$x_value
$y_valueArray$y_value
Returns
						Array
 | 
		
			| 
				 public 
				Array
				
				 | 
			#
			_square( Array $x = false )
				
Performs squaring ParametersReturns
						Array
 | 
		
			| 
				 public 
				Array
				
				 | 
			#
			_baseSquare( Array $value )
				
Performs traditional squaring on two BigIntegers 
				
Performs traditional squaring on two BigIntegers Squaring can be done faster than multiplying a number by itself can be. See
HAC 14.2.4 / MPM 5.3 for more information. ParametersReturns
						Array
 | 
		
			| 
				 public 
				Array
				
				 | 
			#
			_karatsubaSquare( Array $value )
				
Performs Karatsuba "squaring" on two BigIntegers | 
		
			| 
				 public 
				Array
				
				 | 
			#
			divide( Math_BigInteger$y )
				
Divides two BigIntegers. Returns an array whose first element contains the quotient and whose second
element contains the "common residue". If the remainder would be positive, the
"common residue" and the remainder are the same. If the remainder would be
negative, the "common residue" is equal to the sum of the remainder and the
divisor (basically, the "common residue" is the first positive modulo). Here's an example: 
<?php
   include('Math/BigInteger.php');
   $a = new Math_BigInteger('10');
   $b = new Math_BigInteger('20');
   list($quotient, $remainder) = $a->divide($b);
   echo $quotient->toString(); 
   echo "\r\n";
   echo $remainder->toString(); 
?>
ParametersReturns
						Array
 | 
		
			| 
				 public 
				Array
				
				 | 
			#
			_divide_digit( Array $dividend, Array $divisor )
				
Divides a BigInteger by a regular integer 
				
Divides a BigInteger by a regular integer abc / x = a00 / x + b0 / x + c / x Parameters
						$dividendArray$dividend
$divisorArray$divisor
Returns
						Array
 | 
		
			| 
				 public 
				Math_BigInteger | 
			#
			modPow( Math_BigInteger$e,Math_BigInteger$n )
				
Performs modular exponentiation. 
				
Performs modular exponentiation. Here's an example: 
<?php
   include('Math/BigInteger.php');
   $a = new Math_BigInteger('10');
   $b = new Math_BigInteger('20');
   $c = new Math_BigInteger('30');
   $c = $a->modPow($b, $c);
   echo $c->toString(); 
?>
ParametersReturns | 
		
			| 
				 public 
				Math_BigInteger | 
			#
			powMod( Math_BigInteger$e,Math_BigInteger$n )
				
Performs modular exponentiation. 
				
Performs modular exponentiation. Alias for Math_BigInteger::modPow() ParametersReturns | 
		
			| 
				 public 
				Math_BigInteger | 
			#
			_slidingWindow( Math_BigInteger$e,Math_BigInteger$n, Integer $mode )
				
Sliding Window k-ary Modular Exponentiation 
				
Sliding Window k-ary Modular Exponentiation Based on HAC 14.85 / MPM 7.7. In a departure from those algorithims, however, this function performs
a modular reduction after every multiplication and squaring operation. As such,
this function has the same preconditions that the reductions being used do. ParametersReturns | 
		
			| 
				 public 
				Array
				
				 | 
			#
			_reduce( Array $x, Array $n, Integer $mode )
				
Modular reduction For most $modes this will return the remainder. Parameters
						$xArray$x
$nArray$n
$modeInteger$mode
Returns
						Array
 See | 
		
			| 
				 public 
				Array
				
				 | 
			#
			_prepareReduce( Array $x, Array $n, Integer $mode )
				
Modular reduction preperation 
				
Modular reduction preperation Parameters
						$xArray$x
$nArray$n
$modeInteger$mode
Returns
						Array
 See | 
		
			| 
				 public 
				Array
				
				 | 
			#
			_multiplyReduce( Array $x, Array $y, Array $n, Integer $mode )
				
Modular multiply Parameters
						$xArray$x
$yArray$y
$nArray$n
$modeInteger$mode
Returns
						Array
 See | 
		
			| 
				 public 
				Array
				
				 | 
			#
			_squareReduce( Array $x, Array $n, Integer $mode )
				
Modular square Parameters
						$xArray$x
$nArray$n
$modeInteger$mode
Returns
						Array
 See | 
		
			| 
				 public 
				Math_BigInteger | 
			#
			_mod2( Math_BigInteger$n )
				
Modulos for Powers of Two 
				
Modulos for Powers of Two Calculates $x%$n, where $n = 2**$e, for some $e. Since this is basically the
same as doing $x & ($n-1), we'll just use this function as a wrapper for
doing that. ParametersReturnsSee | 
		
			| 
				 public 
				Array
				
				 | 
			#
			_barrett( Array $n, Array $m )
				
Barrett Modular Reduction 
				
Barrett Modular Reduction See HAC 14.3.3 / MPM 6.2.5 for more information. Modified slightly, so as not to require
negative numbers (initially, this script didn't support negative numbers). Employs "folding", as described at thesis-149.pdf#page=66. To quote from it, "the idea [behind folding] is to find
a value x' such that x (mod m) = x' (mod m), with x' being smaller than x." Unfortunately, the "Barrett Reduction with Folding" algorithm described in
thesis-149.pdf is not, as written, all that usable on account of (1) its not
using reasonable radix points as discussed in MPM 6.2.2 and (2) the fact that, even with reasonable radix points, it only
works when there are an even number of digits in the denominator. The reason for
(2) is that (x >> 1) + (x >> 1) != x / 2 + x / 2. If x is even,
they're the same, but if x is odd, they're not. See the in-line comments for
details. ParametersReturns
						Array
 See | 
		
			| 
				 public 
				Array
				
				 | 
			#
			_regularBarrett( Array $x, Array $n )
				
(Regular) Barrett Modular Reduction 
				
(Regular) Barrett Modular Reduction For numbers with more than four digits Math_BigInteger::_barrett() is faster.
The difference between that and this is that this function does not fold the
denominator into a smaller form. ParametersReturns
						Array
 See | 
		
			| 
				 public 
				Array
				
				 | 
			#
			_multiplyLower( Array $x_value, Boolean $x_negative, Array $y_value, Boolean $y_negative, mixed $stop )
				
Performs long multiplication up to $stop digits 
				
Performs long multiplication up to $stop digits If you're going to be doing array_slice($product->value, 0, $stop), some
cycles can be saved. Parameters
						$x_valueArray$x_value
$x_negativeBoolean$x_negative
$y_valueArray$y_value
$y_negativeBoolean$y_negative
$stopReturns
						Array
 See | 
		
			| 
				 public 
				Array
				
				 | 
			#
			_montgomery( Array $x, Array $n )
				
Montgomery Modular Reduction 
				
Montgomery Modular Reduction ($x->_prepMontgomery($n))->_montgomery($n) yields $x % $n. MPM 6.3 provides insights on how this can be improved upon (basically, by using
the comba method). gcd($n, 2) must be equal to one for this function to work
correctly. ParametersReturns
						Array
 See | 
		
			| 
				 public 
				Array
				
				 | 
			#
			_montgomeryMultiply( Array $x, Array $y, Array $m )
				
Montgomery Multiply Interleaves the montgomery reduction and long multiplication algorithms
together as described in HAC 14.36 Parameters
						$xArray$x
$yArray$y
$mArray$m
Returns
						Array
 See | 
		
			| 
				 public 
				Array
				
				 | 
			#
			_prepMontgomery( Array $x, Array $n )
				
Prepare a number for use in Montgomery Modular Reductions 
				
Prepare a number for use in Montgomery Modular Reductions ParametersReturns
						Array
 See | 
		
			| 
				 public 
				Integer
				
				 | 
			#
			_modInverse67108864( Array $x )
				
Modular Inverse of a number mod 2**26 (eg. 67108864) 
				
Modular Inverse of a number mod 2**26 (eg. 67108864) Based off of the bnpInvDigit function implemented and justified in the
following URL: http://www-cs-students.stanford.edu/~tjw/jsbn/jsbn.js The following URL provides more info: http://groups.google.com/group/sci.crypt/msg/7a137205c1be7d85 As for why we do all the bitmasking... strange things can happen when
converting from floats to ints. For instance, on some computers, var_dump((int)
-4294967297) yields int(-1) and on others, it yields int(-2147483648). To avoid
problems stemming from this, we use bitmasks to guarantee that ints aren't
auto-converted to floats. The outermost bitmask is present because without it,
there's no guarantee that the "residue" returned would be the so-called "common
residue". We use fmod, in the last step, because the maximum possible $x is 26
bits and the maximum $result is 16 bits. Thus, we have to be able to handle up
to 40 bits, which only 64-bit floating points will support. Thanks to Pedro Gimeno Fortea for input! ParametersReturns
						Integer
 See | 
		
			| 
				 public 
				mixed
				
				 | 
			#
			modInverse( Math_BigInteger$n )
				
Calculates modular inverses. 
				
Calculates modular inverses. Say you have (30 mod 17 * x mod 17) mod 17 == 1. x can be found using modular
inverses. Here's an example: 
<?php
   include('Math/BigInteger.php');
   $a = new Math_BigInteger(30);
   $b = new Math_BigInteger(17);
   $c = $a->modInverse($b);
   echo $c->toString(); 
   echo "\r\n";
   $d = $a->multiply($c);
   list(, $d) = $d->divide($b);
   echo $d; 
?>
ParametersReturns
						mixedfalse, if no modular inverse exists, Math_BigInteger, otherwise.
 
 | 
		
			| 
				 public 
				Math_BigInteger | 
			#
			extendedGCD( Math_BigInteger$n )
				
Calculates the greatest common divisor and Bézout's identity. 
				
Calculates the greatest common divisor and Bézout's identity. Say you have 693 and 609. The GCD is 21. Bézout's identity states that there
exist integers x and y such that 693*x + 609*y == 21. In point of fact, there
are actually an infinite number of x and y combinations and which combination is
returned is dependant upon which mode is in use. See Bézout's identity - Wikipedia for more information. Here's an example: 
<?php
   include('Math/BigInteger.php');
   $a = new Math_BigInteger(693);
   $b = new Math_BigInteger(609);
   extract($a->extendedGCD($b));
   echo $gcd->toString() . "\r\n"; 
   echo $a->toString() * $x->toString() + $b->toString() * $y->toString(); 
?>
ParametersReturns | 
		
			| 
				 public 
				Math_BigInteger | 
			#
			gcd( Math_BigInteger$n )
				
Calculates the greatest common divisor 
				
Calculates the greatest common divisor Say you have 693 and 609. The GCD is 21. Here's an example: 
<?php
   include('Math/BigInteger.php');
   $a = new Math_BigInteger(693);
   $b = new Math_BigInteger(609);
   $gcd = a->extendedGCD($b);
   echo $gcd->toString() . "\r\n"; 
?>
ParametersReturns | 
		
			| 
				 public 
				Math_BigInteger |  | 
		
			| 
				 public 
				Integer
				
				 | 
			#
			compare( Math_BigInteger$y )
				
Compares two numbers. Although one might think !$x->compare($y) means $x != $y, it, in fact,
means the opposite. The reason for this is demonstrated thusly: $x > $y: $x->compare($y) > 0 $x < $y: $x->compare($y) < 0
$x == $y: $x->compare($y) == 0 Note how the same comparison operator is used. If you want to test for
equality, use $x->equals($y). ParametersReturns
						Integer< 0 if $this is less than $x; > 0 if $this is greater than $x, and 0 if
they are equal.
 
 See | 
		
			| 
				 public 
				Integer
				
				 | 
			#
			_compare( Array $x_value, Boolean $x_negative, Array $y_value, Boolean $y_negative )
				
Compares two numbers. Parameters
						$x_valueArray$x_value
$x_negativeBoolean$x_negative
$y_valueArray$y_value
$y_negativeBoolean$y_negative
Returns
						Integer
 See | 
		
			| 
				 public 
				Boolean
				
				 | 
			#
			equals( Math_BigInteger$x )
				
Tests the equality of two numbers. 
				
Tests the equality of two numbers. If you need to see if one number is greater than or less than another number,
use Math_BigInteger::compare() ParametersReturns
						Boolean
 See | 
		
			| 
				 public 
				Math_BigInteger | 
			#
			setPrecision( Math_BigInteger$bits )
				
Set Precision Some bitwise operations give different results depending on the precision
being used. Examples include left shift, not, and rotates. ParametersReturns | 
		
			| 
				 public 
				Math_BigInteger |  | 
		
			| 
				 public 
				Math_BigInteger |  | 
		
			| 
				 public 
				Math_BigInteger |  | 
		
			| 
				 public 
				Math_BigInteger |  | 
		
			| 
				 public 
				Math_BigInteger | 
			#
			bitwise_rightShift( Integer $shift )
				
Logical Right Shift Shifts BigInteger's by $shift bits, effectively dividing by 2**$shift. ParametersReturns | 
		
			| 
				 public 
				Math_BigInteger | 
			#
			bitwise_leftShift( Integer $shift )
				
Logical Left Shift Shifts BigInteger's by $shift bits, effectively multiplying by 2**$shift. ParametersReturns | 
		
			| 
				 public 
				Math_BigInteger | 
			#
			bitwise_leftRotate( Integer $shift )
				
Logical Left Rotate Instead of the top x bits being dropped they're appended to the shifted bit
string. ParametersReturns | 
		
			| 
				 public 
				Math_BigInteger | 
			#
			bitwise_rightRotate( Integer $shift )
				
Logical Right Rotate Instead of the bottom x bits being dropped they're prepended to the shifted
bit string. ParametersReturns | 
		
			| 
				 public 
				
				
				 | 
			#
			setRandomGenerator( optional $generator )
				
Set random number generator function 
				
Set random number generator function $generator should be the name of a random generating function whose first
parameter is the minimum value and whose second parameter is the maximum value.
If this function needs to be seeded, it should be seeded prior to calling
Math_BigInteger::random() or Math_BigInteger::randomPrime() If the random generating function is not explicitly set, it'll be assumed to
be mt_rand(). Parameters
						$generatoroptionalString $generator
See | 
		
			| 
				 public 
				Math_BigInteger | 
			#
			random( optional $min = false, optional $max = false )
				
Generate a random number Parameters
						$minoptionalInteger $min
$maxoptionalInteger $max
Returns | 
		
			| 
				 public 
				Math_BigInteger | 
			#
			randomPrime( optional $min = false, optional $max = false, optional $timeout = false )
				
Generate a random prime number. 
				
Generate a random prime number. If there's not a prime within the given range, false will be returned. If
more than $timeout seconds have elapsed, give up and return false. Parameters
						$minoptionalInteger $min
$maxoptionalInteger $max
$timeoutoptionalInteger $timeout
Returns | 
		
			| 
				 public 
				
				
				 | 
			#
			_make_odd( )
				
Make the current number odd 
				
Make the current number odd If the current number is odd it'll be unchanged. If it's even, one will be
added to it. See | 
		
			| 
				 public 
				Boolean
				
				 | 
			#
			isPrime( optional $t = false )
				
Checks a numer to see if it's prime 
				
Checks a numer to see if it's prime Assuming the $t parameter is not set, this function has an error rate of
2**-80. The main motivation for the $t parameter is distributability.
Math_BigInteger::randomPrime() can be distributed accross multiple pageloads on
a website instead of just one. ParametersReturns
						Boolean
 | 
		
			| 
				 public 
				
				
				 | 
			#
			_lshift( Integer $shift )
				
Logical Left Shift Shifts BigInteger's by $shift bits. Parameters | 
		
			| 
				 public 
				
				
				 | 
			#
			_rshift( Integer $shift )
				
Logical Right Shift Shifts BigInteger's by $shift bits. Parameters | 
		
			| 
				 public 
				Math_BigInteger | 
			#
			_normalize( Math_BigInteger$result )
				
Normalize Removes leading zeros and truncates (if necessary) to maintain the
appropriate precision ParametersReturnsSee | 
		
			| 
				 public 
				Math_BigInteger | 
			#
			_trim( mixed $value )
				
Trim Removes leading zeros Returns | 
		
			| 
				 public 
				Array
				
				 | 
			#
			_array_repeat( mixed $input, mixed $multiplier )
				
Array Repeat Parameters
						$inputmixed$input Array
$multipliermixed$multiplier mixed
Returns
						Array
 | 
		
			| 
				 public 
				String
				
				 | 
			#
			_base256_lshift( mixed & $x, mixed $shift )
				
Logical Left Shift Shifts binary strings $shift bits, essentially multiplying by 2**$shift. Parameters
						$xmixed$x String
$shiftmixed$shift Integer
Returns
						String
 | 
		
			| 
				 public 
				String
				
				 | 
			#
			_base256_rshift( mixed & $x, mixed $shift )
				
Logical Right Shift Shifts binary strings $shift bits, essentially dividing by 2**$shift and
returning the remainder. Parameters
						$xmixed$x String
$shiftmixed$shift Integer
Returns
						String
 | 
		
			| 
				 public 
				String
				
				 | 
			#
			_int2bytes( Integer $x )
				
Converts 32-bit integers to bytes. 
				
Converts 32-bit integers to bytes. ParametersReturns
						String
 | 
		
			| 
				 public 
				Integer
				
				 | 
			#
			_bytes2int( String $x )
				
Converts bytes to 32-bit integers 
				
Converts bytes to 32-bit integers ParametersReturns
						Integer
 |